Produkt zum Begriff Big Data Analytics:
-
Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data
The Definitive Guide to Enterprise-Level Analytics Strategy, Technology, Implementation, and Management Organizations are capturing exponentially larger amounts of data than ever, and now they have to figure out what to do with it. Using analytics, you can harness this data, discover hidden patterns, and use this knowledge to act meaningfully for competitive advantage. Suddenly, you can go beyond understanding “how, when, and where” events have occurred, to understand why – and use this knowledge to reshape the future. Now, analytics pioneer Tom Davenport and the world-renowned experts at the International Institute for Analytics (IIA) have brought together the latest techniques, best practices, and research on analytics in a single primer for maximizing the value of enterprise data. Enterprise Analytics is today’s definitive guide to analytics strategy, planning, organization, implementation, and usage. It covers everything from building better analytics organizations to gathering data; implementing predictive analytics to linking analysis with organizational performance. The authors offer specific insights for optimizing supply chains, online services, marketing, fraud detection, and many other business functions. They support their powerful techniques with many real-world examples, including chapter-length case studies from healthcare, retail, and financial services. Enterprise Analytics will be an invaluable resource for every business and technical professional who wants to make better data-driven decisions: operations, supply chain, and product managers; product, financial, and marketing analysts; CIOs and other IT leaders; data, web, and data warehouse specialists, and many others.
Preis: 22.46 € | Versand*: 0 € -
Network Security with Netflow and IPFIX: Big Data Analytics for Information Security
A comprehensive guide for deploying, configuring, and troubleshooting NetFlow and learning big data analytics technologies for cyber security Today’s world of network security is full of cyber security vulnerabilities, incidents, breaches, and many headaches. Visibility into the network is an indispensable tool for network and security professionals and Cisco NetFlow creates an environment where network administrators and security professionals have the tools to understand who, what, when, where, and how network traffic is flowing. Network Security with NetFlow and IPFIX is a key resource for introducing yourself to and understanding the power behind the Cisco NetFlow solution. Omar Santos, a Cisco Product Security Incident Response Team (PSIRT) technical leader and author of numerous books including the CCNA Security 210-260 Official Cert Guide, details the importance of NetFlow and demonstrates how it can be used by large enterprises and small-to-medium-sized businesses to meet critical network challenges. This book also examines NetFlow’s potential as a powerful network security tool. Network Security with NetFlow and IPFIX explores everything you need to know to fully understand and implement the Cisco Cyber Threat Defense Solution. It also provides detailed configuration and troubleshooting guidance, sample configurations with depth analysis of design scenarios in every chapter, and detailed case studies with real-life scenarios. You can follow Omar on Twitter: @santosomar NetFlow and IPFIX basics Cisco NetFlow versions and features Cisco Flexible NetFlow NetFlow Commercial and Open Source Software Packages Big Data Analytics tools and technologies such as Hadoop, Flume, Kafka, Storm, Hive, HBase, Elasticsearch, Logstash, Kibana (ELK) Additional Telemetry Sources for Big Data Analytics for Cyber Security Understanding big data scalability Big data analytics in the Internet of everything Cisco Cyber Threat Defense and NetFlow Troubleshooting NetFlow Real-world case studies
Preis: 25.67 € | Versand*: 0 € -
Digital Marketing Analytics: Making Sense of Consumer Data in a Digital World
Distill Maximum Value from Your Digital Data! Do It Now!Why hasn’t all that data delivered a whopping competitive advantage? Because you’ve barely begun to use it, that’s why! Good news: neither have your competitors. It’s hard! But digital marketing analytics is 100% doable, it offers colossal opportunities, and all of the data is accessible to you. Chuck Hemann and Ken Burbary will help you chop the problem down to size, solve every piece of the puzzle, and integrate a virtually frictionless system for moving from data to decision, action to results! Scope it out, pick your tools, learn to listen, get the metrics right, and then distill your digital data for maximum value for everything from R&D to customer service to social media marketing!Prioritize—because you can’t measure and analyze everything Use analysis to craft experiences that profoundly reflect each customer’s needs, expectations, and behaviors Measure real digital media ROI: sales, leads, and customer satisfaction Track the performance of all paid, earned, and owned digital channels Leverage digital data way beyond PR and marketing: for strategic planning, product development, and HR Start optimizing digital content in real time Implement advanced tools, processes, and algorithms for accurately measuring influence Make the most of surveys, focus groups, and offline research synergies Focus new marketing investments where they’ll deliver the most value • Identify and understand your most important audiences across the digital ecosystem“Chuck and Ken lead marketers clearly and efficiently through the minefield of digital marketing measurement. And they do so with a lightness of touch and absence of jargon so rare in this overhyped, much-misunderstood ecosystem.” —Sam Knowles, Founder & MD of Insight Agents; author of Narrative by Numbers: How to Tell Powerful & Purposeful Stories with Data
Preis: 29.95 € | Versand*: 0 € -
Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python
Now, a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.
Preis: 36.37 € | Versand*: 0 €
-
Was ist der Unterschied zwischen Big Data und Smart Data?
Big Data bezieht sich auf große Mengen von Daten, die aus verschiedenen Quellen stammen und oft unstrukturiert sind. Smart Data hingegen bezieht sich auf die Analyse und Nutzung dieser Daten, um wertvolle Erkenntnisse und Handlungsempfehlungen zu generieren. Smart Data konzentriert sich auf die Auswahl und Verarbeitung relevanter Daten, um konkrete Probleme zu lösen oder Entscheidungen zu unterstützen.
-
Wie beeinflusst Big Data die datengesteuerte Entscheidungsfindung in verschiedenen Branchen?
Big Data ermöglicht es Unternehmen, riesige Mengen an Daten zu sammeln, zu analysieren und zu interpretieren, um fundierte Entscheidungen zu treffen. In der Finanzbranche kann Big Data beispielsweise genutzt werden, um Risiken zu minimieren und Investitionsentscheidungen zu optimieren. In der Gesundheitsbranche kann Big Data dazu beitragen, personalisierte Behandlungspläne zu erstellen und die Effizienz von medizinischen Verfahren zu verbessern.
-
Wie beeinflusst die Nutzung von Big Data die Geschäftsprozesse in Unternehmen?
Die Nutzung von Big Data ermöglicht Unternehmen, fundierte Entscheidungen auf Basis von umfangreichen Datenanalysen zu treffen. Durch die Analyse großer Datenmengen können Unternehmen Trends und Muster identifizieren, um ihre Geschäftsprozesse zu optimieren. Big Data hilft Unternehmen, effizienter zu arbeiten, Kosten zu senken und ihre Wettbewerbsfähigkeit zu steigern.
-
Wie beeinflusst die Nutzung von Big Data die Geschäftsstrategien moderner Unternehmen?
Die Nutzung von Big Data ermöglicht es Unternehmen, fundierte Entscheidungen auf Basis von umfangreichen Datenanalysen zu treffen. Durch die Analyse großer Datenmengen können Trends und Muster identifiziert werden, die es Unternehmen ermöglichen, ihre Geschäftsstrategien zu optimieren und Wettbewerbsvorteile zu erlangen. Big Data hilft Unternehmen auch dabei, ihre Kunden besser zu verstehen und personalisierte Angebote zu entwickeln, um ihre Kundenbindung zu stärken.
Ähnliche Suchbegriffe für Big Data Analytics:
-
Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners
Use Predictive Analytics to Uncover Hidden Patterns and Correlations and Improve Decision-MakingUsing predictive analytics techniques, decision-makers can uncover hidden patterns and correlations in their data and leverage these insights to improve many key business decisions. In this thoroughly updated guide, Dr. Dursun Delen illuminates state-of-the-art best practices for predictive analytics for both business professionals and students. Delen's holistic approach covers key data mining processes and methods, relevant data management techniques, tools and metrics, advanced text and web mining, big data integration, and much more. Balancing theory and practice, Delen presents intuitive conceptual illustrations, realistic example problems, and real-world case studiesincluding lessons from failed projects. It's all designed to help you gain a practical understanding you can apply for profit.* Leverage knowledge extracted via data mining to make smarter decisions* Use standardized processes and workflows to make more trustworthy predictions* Predict discrete outcomes (via classification), numeric values (via regression), and changes over time (via time-series forecasting)* Understand predictive algorithms drawn from traditional statistics and advanced machine learning* Discover cutting-edge techniques, and explore advanced applications ranging from sentiment analysis to fraud detection
Preis: 37.44 € | Versand*: 0 € -
Getting Started with Data Science: Making Sense of Data with Analytics
Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy!Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now.Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories.Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing.You’ll master data science by answering fascinating questions, such as:• Are religious individuals more or less likely to have extramarital affairs?• Do attractive professors get better teaching evaluations?• Does the higher price of cigarettes deter smoking?• What determines housing prices more: lot size or the number of bedrooms?• How do teenagers and older people differ in the way they use social media?• Who is more likely to use online dating services?• Why do some purchase iPhones and others Blackberry devices?• Does the presence of children influence a family’s spending on alcohol?For each problem, you’ll walk through defining your question and the answers you’ll need; exploring howothers have approached similar challenges; selecting your data and methods; generating your statistics;organizing your report; and telling your story. Throughout, the focus is squarely on what matters most:transforming data into insights that are clear, accurate, and can be acted upon.
Preis: 18.18 € | Versand*: 0 € -
Big Data Demystified
The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed. 'Big Data' refers to a new class of data, to which 'big' doesn't quite do it justice. Much like an ocean is more than simply a deeper swimming pool, big data is fundamentally different to traditional data and needs a whole new approach. Packed with examples and case studies, this clear, comprehensive book will show you how to accumulate and utilise 'big data' in order to develop your business strategy. Big Data Demystified is your practical guide to help you draw deeper insights from the vast information at your fingertips; you will be able to understand customer motivations, speed up production lines, and even offer personalised experiences to each and every customer. With 20 years of industry experience, David Stephenson shows how big data can give you the best competitive edge, and why it is integral to the future of your business.
Preis: 16.04 € | Versand*: 0 € -
Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data
The Definitive Guide to Enterprise-Level Analytics Strategy, Technology, Implementation, and Management Organizations are capturing exponentially larger amounts of data than ever, and now they have to figure out what to do with it. Using analytics, you can harness this data, discover hidden patterns, and use this knowledge to act meaningfully for competitive advantage. Suddenly, you can go beyond understanding “how, when, and where” events have occurred, to understand why – and use this knowledge to reshape the future. Now, analytics pioneer Tom Davenport and the world-renowned experts at the International Institute for Analytics (IIA) have brought together the latest techniques, best practices, and research on analytics in a single primer for maximizing the value of enterprise data. Enterprise Analytics is today’s definitive guide to analytics strategy, planning, organization, implementation, and usage. It covers everything from building better analytics organizations to gathering data; implementing predictive analytics to linking analysis with organizational performance. The authors offer specific insights for optimizing supply chains, online services, marketing, fraud detection, and many other business functions. They support their powerful techniques with many real-world examples, including chapter-length case studies from healthcare, retail, and financial services. Enterprise Analytics will be an invaluable resource for every business and technical professional who wants to make better data-driven decisions: operations, supply chain, and product managers; product, financial, and marketing analysts; CIOs and other IT leaders; data, web, and data warehouse specialists, and many others.
Preis: 29.95 € | Versand*: 0 €
-
Was sind die potenziellen Risiken und Vorteile von Big Data-Analysen für Unternehmen?
Potenzielle Risiken von Big Data-Analysen für Unternehmen sind Datenschutzverletzungen, ungenaue oder fehlerhafte Analysen sowie Abhängigkeit von Technologie. Vorteile sind verbesserte Entscheidungsfindung, effizientere Prozesse und besseres Verständnis der Kundenbedürfnisse. Unternehmen können auch neue Geschäftsmöglichkeiten entdecken und Wettbewerbsvorteile erlangen.
-
Inwiefern hat die Verwendung von Big Data in den Bereichen Gesundheitswesen, Finanzen und Marketing zu Veränderungen und Fortschritten geführt?
Die Verwendung von Big Data im Gesundheitswesen hat zu einer verbesserten Diagnose und Behandlung von Krankheiten geführt, da große Datenmengen analysiert werden können, um Muster und Trends zu erkennen. Im Finanzsektor hat die Nutzung von Big Data zu einer besseren Risikobewertung, Betrugserkennung und personalisierten Finanzdienstleistungen geführt. Im Marketing hat die Verwendung von Big Data zu einer präziseren Zielgruppenansprache, personalisierten Werbekampagnen und einer verbesserten Kundenbindung geführt. Insgesamt haben die Fortschritte in der Nutzung von Big Data in diesen Bereichen zu effizienteren Prozessen, besseren Entscheidungen und letztendlich zu einer verbesserten Kundenerfahrung geführt.
-
Welche Rolle spielen künstliche Intelligenz und Big Data in der zukünftigen Entwicklung von Technologien?
Künstliche Intelligenz und Big Data werden eine entscheidende Rolle bei der Entwicklung von Technologien spielen, da sie es ermöglichen, große Datenmengen zu analysieren und Muster zu erkennen. Durch den Einsatz von künstlicher Intelligenz können Technologien effizienter und präziser gesteuert werden. Die Kombination von Big Data und künstlicher Intelligenz wird Innovationen vorantreiben und neue Möglichkeiten für die Technologieentwicklung eröffnen.
-
Kann man als Data Scientist online oder auf Englisch arbeiten?
Ja, als Data Scientist kann man online oder auf Englisch arbeiten. Viele Unternehmen bieten remote Arbeitsmöglichkeiten an, bei denen man von überall aus arbeiten kann. Zudem ist Englisch die dominierende Sprache in der Data Science Community, daher ist es üblich, dass viele Projekte und Kommunikation auf Englisch stattfinden.
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.